1,089 research outputs found

    Staying adiabatic with unknown energy gap

    Full text link
    We introduce an algorithm to perform an optimal adiabatic evolution that operates without an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The result is compatible with an exponential speed-up for up to twenty qubits with respect to classical algorithms. We finally study a possible algorithm improvement by combining it with the quantum Zeno effect.Comment: 4 pages, 4 figure

    A simple quantum gate with atom chips

    Full text link
    We present a simple scheme for implementing an atomic phase gate using two degrees of freedom for each atom and discuss its realization with cold rubidium atoms on atom chips. We investigate the performance of this collisional phase gate and show that gate operations with high fidelity can be realized in magnetic traps that are currently available on atom chips.Comment: 7 pages, 7 figures. One missing reference added in v2. To appear in European Physical Journal

    A bosonic Josephson junction controlled by a single trapped ion

    Full text link
    We theoretically investigate the properties of a double-well bosonic Josephson junction coupled to a single trapped ion. We find that the coupling between the wells can be controlled by the internal state of the ion, which can be used for studying mesoscopic entanglement between the two systems and to measure their interaction with high precision. As a particular example we consider a single 87^{87}Rb atom and a small Bose-Einstein condensate controlled by a single 171^{171}Yb+^+ ion. We calculate inter-well coupling rates reaching hundreds of Hz, while the state dependence amounts to tens of Hz for plausible values of the currently unknown s-wave scattering length between the atom and the ion. The analysis shows that it is possible to induce either the self-trapping or the tunneling regime, depending on the internal state of the ion. This enables the generation of large scale ion-atomic wavepacket entanglement within current technology.Comment: 6 pages and 5 figures, including additional material. Accepted for publication in Phys. Rev. Let

    Room temperature Rydberg Single Photon Source

    Full text link
    We present an optimal protocol to implement a room temperature Rydberg single photon source within an experimental setup based on micro cells filled with thermal vapor. The optimization of a pulsed four wave mixing scheme allows to double the effective Rydberg blockade radius as compared to a simple Gaussian pulse scheme, releasing some of the constrains on the geometry of the micro cells. The performance of the optimized protocol is improved by about 70% with respect to the standard protocol.Comment: 5 pages, 6 figure

    Impulsive quantum measurements: restricted path integral versus von Neumann collapse

    Full text link
    The relation between the restricted path integral approach to quantum measurement theory and the commonly accepted von Neumann wavefunction collapse postulate is presented. It is argued that in the limit of impulsive measurements the two approaches lead to the same predictions. The example of repeated impulsive quantum measurements of position performed on a harmonic oscillator is discussed in detail and the quantum nondemolition strategies are recovered in both the approaches.Comment: 12 pages, 3 figure
    • …
    corecore